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Abstract
Since the delamination induced failure of a laminated smart structure always
occurs under the action of mechanical and electrical fields, a generalized
two-dimensional model for a piezoelectric/elastic laminate is established in
order to analyze the effect of an applied electric field on its delamination.
First, based on the double Fourier series method, a general analytical
solution of the mid-plane displacement is derived for any boundary
condition. Furthermore, the energy release rate is employed to study the
influence of the applied electric field and mechanical loading on the fracture
characteristics of the piezoelectric/elastic laminate. The energy release rates
for modes I and II fracture behavior of the PZT/elastic laminates are
calculated in detail. Such calculations indicate that it is feasible to choose
not only suitable material properties of the piezoelectric and elastic layers,
but also their thicknesses, to improve the smart structure’s fracture strength
within a specified range.

1. Introduction

Recently, smart materials, such as PZT, BaTiO3 and PLZT
etc, have been widely used in smart structures, for instance
actuators, sensors etc [1–3]. Generally, the smart structures are
composed of some smart material layers and elastic layers such
as steel, composite etc. Since the devices are always subjected
to combined strong electric fields and mechanical loading,
debonding may occur at the interface between the smart
material layers and the elastic layers [1, 4, 5]. The debonding
can significantly alter not only the dynamic response, including
the open- and closed-loop frequencies but also the control
authority of the smart structure, and can even induce the
smart structure’s failure. Then, the reliability problem of
these devices becomes one of the most predominant issues
for the wider application of the smart materials and structures.

4 Author to whom correspondence should be addressed.

In recent years many theoretical analyses have been performed
to investigate the static and dynamic mechanical properties
of piezoelectric/elastic composites on the basis of the beam
model [6, 7], the classic laminate theory (CLT) [8–12], the
first-order Mindlin-type analysis [13] and higher-order theory
[14–16], etc. However, there were few works on studying
the effect of external electric and mechanical field on the
failure behavior of the piezoelectric/elastic laminate. Recently,
some experimental and theoretical works were carried out by
Seeley and Chattopadhyay [4, 5] and Cheng et al [17] in order
to verify the effect of the electric field on smart structures’
debonding.

In the present paper, we establish a generalized two-
dimensional model for a cracked composite plate integrated
with a piezoelectric layer and an elastic layer in order to
study their delamination problem. Then on the basis of
the developed double Fourier series, an analytical solution
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Figure 1. The generalized two-dimensional model shows a
delamination inside the piezoelectric/elastic composite.
(a) Deformation geometry (b) debonding extends to δa.

for the displacement of a smart plate for any boundary
conditions is obtained. Furthermore, the energy release
rate is derived in order to analyze the effect of the
electric field on the delamination of the smart composite
structures.

2. Generalized two-dimensional model for a
delamination

In order to describe the delamination problem of the smart
laminate, we consider a delamination in a composite plate,
integrated with one upper piezoelectric layer with thickness
h1 and one lower elastic layer with the thickness h2 as shown
in figure 1. This is a thin sheet of thickness h and width b
containing a delamination with the length a, or a crack in
the interface between the piezoelectric layer and the elastic
layer. It is assumed that the poling direction of piezoelectric
layer is along the z-axis. It is no doubt that the delamination
could either propagate or close under the action of the external
mechanical load or electric field.

In order to obtain the elastic fields of each layer before
and after the delamination extension δx along the x-direction,
we employ the CLT to investigate the elastic fields of a plate.
If the crack tip is taken to be originally at o and then move to o′

as shown in figure 1, we may take the original displacements
and rotations of the laminate as u00

i (xi) and φ00
i (xi) at o′ to

φ00
i + (dφ00

i /dxj )δxj and u00
i + (du00

i /dxj )δxj at o (i, j = 1, 2
and x1 = x, x2 = y). When the crack tip in the original
point moves from o to o′, the displacements and rotations of
the upper ‘1’ and lower ‘2’ lamina at o will be (du1

i /dxj )δxj ,
(dφ1

i /dxj )δxj and (du2
i /dxj )δxj , (dφ

2
i /dxj )δxj . In terms

of the CLT and the relationships between the strains and
displacements, the strains’ change of the relevant lamina due

to the crack extension δx can be determined as follows:(
du1

i

dxj
− du00

i

dxj

)
δxj

(
dφ1

i

dxj
− dφ00

i

dxj

)
δxj

(
du2

i

dxj
− du00

i

dxj

)
δxj and

(
du2

i

dxj
− dφ00

i

dxj

)
δxj .

Therefore, extending Williams’ [18] one-dimensional
model for the crack laminates to the two-dimensional
delamination problem, we can calculate the free energy change
of the PZT/elastic laminate due to the delamination extension
of a fictitious length δx, as shown in figure 1(b). After
integrating the energy through the thickness h1 and h2 for
each layer we can present the energy release rate for the
delamination of the laminated plate as follows:

G = 1

2b

[ ∫
PZT

[Np(ε
1 − ε00) +Mp(−k1 + k00)] dx dy

+
∫

Ela
[Ne(ε

2 − ε00) +Me(−k2 + k00)] dx dy

]
(1)

where εij = dui/dxj , φi = dw/dxi and −kij = dφi/dxj
(i, j = 1, 2) are used. Np, Mp, Ne and Me are the forces
and moments of the PZT lamina and the elastic lamina at o,
respectively.

It is explicitly indicated that we must compute the strains
ε and the rotations φ of the piezoelectric lamina and elastic
lamina with the clamped edge AB, respectively. Therefore, we
have to analyze a plate (piezoelectric plate and elastic plate)
with the boundary conditions of one edge clamped and other
edges free.

3. Analytic solution of the composite plates with
integrated piezoelectric layer

Using the CLT to analyze the piezoelectric plate, we have the
constitutive relationship of the piezoelectric lamina and elastic
lamina in the following formation:

{
σx
σy
τxy

}
k

=
[
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

]
k


{

εx
εy
εxy

}
k

−
{
d31E3

d31E3

0

}
k



(2)

where Qij are the stiffness tensors, d31 is the piezoelectric
constant and E3 is the applied external electric field along
the poling direction (z-axis) of the piezoelectric layer. The
subscript k denotes the kth layer of the laminated composite
plate. For the elastic layer, the electric-induced strain, for
example the second part of the right-hand side in equation (2),
is equal to zero.

In the light of the Kirchhoff hypothesis, the strain of a plate
may be written as the function of the mid-plane displacement
u0, v0 and the transverse deflection w in the following form:

εx = ∂u0

∂x
− z

∂2w

∂x2

εy = ∂v0

∂y
− z

∂2w

∂y2

γxy =
(
∂u0

∂y
− ∂v0

∂x

)
− 2x

∂2w

∂x∂y
. (3)
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Furthermore, the resultant forces and moments are defined by{
Nx
Ny
Nxy

}
=

∫ h/2

−h/2

{
σx
σy
τxy

}
dz

=
[
A11 A12 A16

A12 A22 A26

A16 A26 A66

] 

ε0
x

ε0
y

ε0
xy




+

[
B11 B12 B16

B12 B22 B26

B16 B26 B66

] {
kx
ky
kxy

}

+
n∑
k=1

(zk − zk−1)

{
e31E3

e31E3

0

}
(4a)

{
Mx

My

Mxy

}
=

∫ h/2

−h/2

{
σx
σy
τxy

}
z dz

=
[
B11 B12 B16

B12 B22 B26

B16 B26 B66

] 

ε0
x

ε0
y

ε0
xy




+

[
D11 D12 D16

D12 D22 D26

D16 D26 D66

] {
kx
ky
kxy

}

+
n∑
k=1

1

2
(z2
k − z2

k−1)

{
e31E3

e31E3

0

}
(4b)

where the following definitions are used



ε0
x

ε0
y

ε0
xy


 =




∂u0

∂x
∂v0

∂y

∂u0

∂y
+
∂v0

∂x




and

{
kx
ky
kxy

}
= −




∂2w

∂x2

∂2w

∂y2

2
∂2w

∂x∂y




(5)

the stiffness matrixes are calculated by

Aij =
N∑
k=1

(Qij )k(zk − zk−1)

Bij = 1

2

N∑
k=1

(Qij )k(z
2
k − z2

k−1)

Dij = 1

3

N∑
k=1

(Qij )k(z
3
k − z3

k−1)

and the piezoelectric constants are derived from

ekij = Qijmndkmn.

Since the piezoelectric layer in some smart structures is
required not to be completely covered by electrode in order
to perform some functions, the effect of electrode needs to be

taken into consideration. On the other hand, the strength of
the polarization field can be changed or depoled if the lamina
is made from the material with ferroelectric behavior such
as PVDF, PZT etc. Therefore, d31 can be varied along the
x–y plane. In order to consider the effect of polarization
and electrodes, Lee [9] expressed the practical piezoelectric
constant d31 by

d31 = d310P(x, y)

where d310 is obtained from specifications or measurement.
P(x, y) is determined by the electrode pattern of the
piezoelectric layer.

While the surface of piezoelectric plate are completely
covered by the electrode, P(x, y) can be presented by

P(x, y) = [H(x)−H(x − a)] × [H(y)−H(y − b)]

where H(x) is the Heaviside function, a and b are the length
and width of the piezoelectric plate.

Furthermore, the equilibrium equations of a plate (elastic
or piezoelectric) can be described by

∂Nx

∂x
+
∂Nxy

∂y
= 0

∂Ny

∂y
+
∂Nxy

∂x
= 0 (6a)

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
= p0 (6b)

and the relevant pre-described boundary conditions must be
satisfied along the x- and y-axial edges as follows:

un = un or Nn = Nn

ut = ut or Nnt = Nnt

w,n = w,n or Mn = Mn

w = w or Mnt,t +Qn = Kn.

Substituting equation (5) into equation (6) can yield

A11
∂2u0

∂x2
+ A66

∂2u0

∂y2
+ 2A16

∂2u0

∂x∂y
+ A16

∂2v0

∂x2

+(A12 + A66)
∂2v0

∂x∂y
+ A26

∂2v0

∂y2
− B11

∂3w

∂x3

−3B16
∂w3

∂x2∂y
− (B12 + 2B66)

∂w3

∂x∂y2
− B26

∂w3

∂y3

=
n∑
k=1

(zk − zk−1)e31E3

×∂{[H(x)−H(x − a)] × [H(y)−H(y − b)]}
∂x

A16
∂2u0

∂x2
+ A26

∂2u0

∂y2
+ (A12 + A66)

∂2u0

∂x∂y
+ A66

∂2v0

∂x2

+2A26
∂2v0

∂x∂y
+ A22

∂2v0

∂y2
− B16

∂3w

∂x3
− 3B26

∂3w

∂x∂y2

−(B12 + 2B66)
∂w3

∂x2∂y
− B22

∂3w

∂y3

=
n∑
k=1

(zk − zk−1)e31E3

×∂{[H(x)−H(x − a)] × [H(y)−H(y − b)]}
∂y
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D11
∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2(D12 + 2D66)

∂4w

∂x2∂y2

+4D26
∂4w

∂x∂y3
+D22

∂4w

∂y4
− B11

∂3u0

∂y3
− 3B16

∂3u0

∂x2∂y

−(B12 + 2B66)
∂3u0

∂x∂y2
− B26

∂3u0

∂y3
− B16

∂3v0

∂x3

−(B12 + 2B66)
∂3v0

∂x∂y2
− 3B26

∂3v0

∂x∂y2
− B22

∂3v0

∂y3
= p0.

(7)

It is clear that the equation (7) is a series of highly-
coupled partial differential equations (PDEs) including the
three-order and fourth-order partial differentials for the mid-
plane displacements u0, v0 and w. In order to solve the
highly-coupled equations (PDEs) with constant coefficients,
a double Fourier series approach is employed to give the
analytical solutions in the cases of the different boundary
conditions, as indicated by Chaudhuri and Kabir [19–21].
This method facilitates the well-posedness of the Fourier
analysis through selecting the coefficients of the assumed
double Fourier series solutions for the unknown functions
and introducing the certain boundary-discontinuous Fourier
coefficients. After substituting those Fourier series solutions
and their derivations into the equilibrium equations and the
relevant boundary conditions, we can furnish a complete
system of linear algebraic equations to derive the solutions, i.e.
the number of equations is equal to the number of the unknown
coefficients.

In terms of the equilibrium equation (7) and the pre-
described boundary conditions of one edge clamped and three
edges free, it is generally impossible to seek for a Fourier series
solution suitable for both equilibrium conditions and boundary
conditions simultaneously. Based on the developed double
Fourier series approach, we can assume the following Fourier
series solutions to reduce the equilibrium equations into a brief
formula but not necessarily satisfy the pre-described condition:

u0 =
∞∑
m=0

∞∑
n=1

Umn cos(αmx) sin(βny)

0 � x � a, 0 < y < b

v0 =
∞∑
m=1

∞∑
n=0

Vmn sin(αmx) cos(βny)

0 < x < a, 0 � y � b

w =
∞∑
m=0

∞∑
n=1

Wmn cos(αmx) sin(βny)

0 � x � a, 0 < y < b (8)

where αm = mπ/a, βn = nπ/b and a is the length
of the delamination. However, we can introduce some
unknown constant coefficients to satisfy the pre-described
boundary conditions. It is clear that a system of the simplest
linear algebraic equations can be easily derived through
directly equating the coefficients of cos(αmx) sin(βny),
sin(αmx) cos(βny) etc when the assumed Fourier series
solutions and their derivatives obtained by the methods
developed are substituted into the equilibrium equations. Thus,
the work of computation can be reduced in a sense, which is
the principle of the Fourier series solution’s choice.

Since the boundary conditions along the edges x = 0 and
x = a are continuous, we have u0(0 − 0, y) = u0(0 + 0, y)
and u0(a − 0, y) = u0(−a + 0, y). Therefore, ∂u0/∂x can be
obtained by term-wise differentiation as

∂u0

∂x
=

∞∑
m=1

∞∑
n=1

−αmUmn sin(αmx) sin(βny)

0 < x < a, 0 < y < b. (9a)

However, since the boundary conditions along the edges
y = 0 and y = b are discontinuous, we can use the
part integration to derive ∂u0/∂y through introducing certain
boundary-discontinuous Fourier coefficients as follows:

∂u0

∂y
= au0

4
+

1

2

∞∑
m=1

aum cos(αmx)

+
1

2

∞∑
n=1

[βnU0n + γnau0 + ϕnbu0] cos(βny)

+
∞∑
m=1

∞∑
n=1

[βnUmn + γnaum + ϕnbum] cos(αmx) cos(βny)

(9b)

where

(γm, ϕm) =
{
(0, 1) if m is odd

(1, 0) if m is even

and the following boundary-discontinuous Fourier coefficients
are introduced:

(aum, bum) = 4

ab

∫ a

0
[±u0(x, b)− u0(x, 0)] cos(αm) dx.

Heuristically in terms of the introduced constant
coefficients, the discontinuous displacement functions and
their derivatives at the boundaries may be obtained, for
example as

u0(x, b) =
∞∑
m=0

b

4
(aum − bum) cos(αmx) (9c)

u0(x, 0) =
∞∑
m=0

b

4
(−aum − bum) cos(αmx). (9d)

Extension of the above method to the second derivatives
is straightforward, for example

∂2u0

∂x2
= 1

2

∞∑
n=1

cun sin(βny)

+
∞∑
m=1

∞∑
n=1

[−α2
mUmn + γmcun + ϕmdun]

+ cos(αmx) sin(βny) (10)

where the constant coefficients cun and dun are introduced
due to ∂u0/∂x is discontinuous along the edges x = 0 and
x = a, as presented in the appendix. Derivatives of other
functions (v0, w) can be obtained in a manner similar to the
solution procedure for the derivatives of u0 with respect to
x and y. Expansion of the right-hand part (e.g. the external
mechanical or electrical loading) of equation (7) into a double
Fourier series and the substitution of the assumed functions
and their derivatives into the left-hand part of equation (7), we
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obtain a system of linear algebraic equations through equating
the coefficients of cos(αmx) sin(βny), sin(αmx) cos(βny) etc.
In order to furnish a complete solution of the introduced
constant coefficients, we must further substitute the assumed
functions and their derivatives into the corresponding pre-
described boundary conditions.

In the light of the generalized two-dimensional model, it is
noted that we only need to solve the strains and stresses for the
PZT lamina and the elastic lamina respectively. Therefore for
the general commercial piezoelectric ceramic lamina, we have
the stiffness matrixes Bij = 0 and A16 = A26 = 0 in terms of
the Kirchhoff hypothesis. For brevity, the solution procedure
is illustrated only for the equilibrium equations (7a) and (7b)
and the related boundary conditions. After the assumed
Fourier series solutions and their derivatives are substituted
into those equations, a system of (2mn + 5n + 5m + 4) linear
algebraic equations is obtained by equating the coefficients
of cos(αmx) sin(βny), sin(αmx) cos(βny), sin(αmx), cos(βny)
etc in the following formula.

The linear algebraic equations are obtained from the first
and second expressions of equilibrium equation (7) as follows:

A11(γmcun + ϕmdun − α2
mUmn)

−A66βn(γnaum + ϕnbum + βnUmn)− (A12 + A66)βn

×(γmavn + ϕmbvn + αmVmn)

= 4e31E3(1 − (−1)m)(1 − (−1)n)

abβn
(11a)

−1

2
A66au0γnβn − 1

2
A12avnβn − 1

2
A66avnβn

−1

2
A66bu0ϕnβn +

1

2
A11cun − 1

2
A66β

2
nU0n

= 4e31E3(1 − (−1)n)

abβn
(11b)

−(A12 + A66)αm(γnaum + ϕnbum + βnUmn)

−A66αm(γmavn + ϕmbvn + αmVmn)

+A22(γncvm + ϕndvm − β2
nVmn)

= 4e31E3(1 − (−1)m)(1 − (−1)n)

abαm
(11c)

−1

2
A66av0γmαm − 1

2
A12aumαm − 1

2
A66aumαm

−1

2
A66bv0ϕmαm +

1

2
A2cvm − 1

2
A66α

2
mV0m

= 4e31E3(1 − (−1)m)

abαn
. (11d)

From the boundary conditions of one edge clamped and other
edges free, the other linear algebraic equations can be obtained;
for example in terms of the boundary condition u(0, y) = 0,
substituting x = 0 into the assumed double Fourier series
solution of u and equating the coefficient of sin(βny) to zero
yields

U0n +
∞∑
m=1

Umn = 0. (11e)

From the boundary condition v(0, y) = 0 and the
introduced boundary-discontinuous Fourier series coefficients
of v, i.e. equation (A3) shown in the appendix, equating the
coefficients of cos(βny) to zero yields

av0 + bv0 = 0 (11f)

avn + bvn = 0. (11g)

In the same manner, we can obtain other linear algebraic
equations from the other boundary conditions as follows:

Q11
a

4
(cun − dun)−Q12βn

a

4
(avn − bvn)

= e31E3(1 − (−1)n)

bβn
(11h)

au0

4
+

∞∑
m=1

1

2
aum(−1)m +

av0

4

+
∞∑

m=∞

1

2
(av0γm + bv0ϕm + αmV0m)(−1)m = 0 (11i)

∞∑
m=1

(γnaum + ϕnbum + βnUmn)(−1)m

+
1

2
(au0γn + bu0ϕn + βnU0n) +

1

2
avn

+
∞∑
m=1

(γmavn + ϕmbvn + αmVmn)(−1)m = 0 (11j )

au0

4
+

∞∑
n=1

1

2
(au0γn + bv0ϕn + βnU0n) +

av0

4

+
∞∑
n=1

1

2
avn = 0 (11k)

∞∑
n=1

(γnaum + ϕnbum + βnUmn) +
1

2
aum

+
1

2
(av0γm + bv0ϕm + αmV0m)

+
∞∑
n=1

(γmavn + ϕmbvn + αmVmn) = 0 (11l)

au0

4
+

∞∑
n=1

1

2
(au0γn + bv0ϕn + βnU0n)(−1)n +

av0

4

+
∞∑
n=1

1

2
avn(−1)n = 0 (11m)

∞∑
n=1

(γnaum + ϕnbum + βnUmn)(−1)n +
1

2
aum

+
1

2
(av0γm + bv0ϕm + αmV0m)

+
∞∑
n=1

(γmavn + ϕmbvn + αmVmn)(−1)n = 0 (11n)

−Q22
b

4
(cvm + dvm) +Q21αm

b

4
(aum + bum)

= e31E3(1 − (−1)m)

aαm
(11o)

Q22
b

4
(cvm − dvm)−Q21αm

b

4
(aum − bum)

= e31E3(1 − (−1)m)

aαm
(11p)
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where the unknown coefficients introduced are shown in detail
in the appendix. The discontinuous displacement functions
and their derivatives at the boundaries are presented by those
introduced unknown coefficients, as well as equations (9c)
and (9d) and the following differential and integral are used:

∂H(x − x0)

∂x
= δ(x − x0)

and ∫
f (x)δ(x − x0) = f (x0).

Furthermore, we can solve the complete linear algebraic
equations so as to obtain all the constant coefficients
introduced by the boundary discontinuity or differential
induced discontinuity. Substituting these solutions into
equation (5), we can easily obtain the mid-plane strains and
curvatures of the piezoelectric layer at o. Thus, we can
obtain the relevant forces and moments of the piezoelectric
layer in terms of equation (4). In a similar manner, we can
also obtain the curvatures and moments of the elastic plate
with one edge clamped and others edges free. While the
stress resultants and moment resultants of the upper ‘1’ and
lower ‘2’ lamina are obtained, the stress resultants and moment
resultants of the uncracked zone of the PZT/elastic laminate
can be derived through balancing the forces and moments of the
representative volume element (RVE), as shown in figure 1(b),
as follows:

N0
x N0

y N0
xy M0

x M0
y M0

xy.

Substituting the relevant stress resultants and moment
resultants N0

x , N0
y , N0

xy , M0
x , M0

y and M0
xy into equation (4)

yields the strains ε00 and curvatures k00 of the uncracked zone
of the PZT/elastic laminated composite as{
ε00

k00

}
=

[
[B−1A−D−1B]−1B−1

[A−1B − B−1D]−1A−1

−[B−1A−D−1B]−1D−1

−[A−1B − B−1D]−1B−1

] {
N0

M0

}
whereA, B andD are the stiffness matrixes of the PZT/elastic
composite.

Furthermore, substituting the results of the strains and
curvatures ε00, k00, ε1, k1, ε2, k2 and the stress resultants and
moment resultants Np, Mp, Ne, Me into equation (1), we can
obtain the energy release rate for the delamination extension
in detail.

4. Simulations and discussions

In the present paper we are concerned with the calculation
of the energy release rate but not the critical fracture energy
release rate. According to the proposed two-dimensional
fracture model for the composite plate integrated with a
piezoelectric layer, the effect of the applied electric field on
the energy release rate of a PZT/elastic composite plate of size
0.03 × 0.007 × 0.002 m3 is analyzed in detail. The material
constants of the elastic layer and the PZT layer are presented
as the following.

a 

p0 

p0 

(a)

p0 

a 

(b)

Figure 2. A common double cantilever beam experiment:
(a) mode I fracture and (B) mode II fracture.

• Anisotropic elastic material I: Poisson’s ratio ν12 = ν33

= ν23 = 0.3, elastic modulus E11 = 150 GPa, E22

= E33 = 9 GPa, G12 = G13 = 7.1 GPa, G23 = 2.5 GPa.
• Isotropic elastic material II: Poisson’s ratio ν12 = ν33

= ν23 = 0.3, elastic modulus E11 = E22 = E33 = 150
GPa.

• PZT layer: Poisson ratio ν12 = ν33 = ν23 = 0.3,
piezoelectric constants d31 = d32 = 254 × 10−12 m V−1,
elastic modulus E11 = 63 GPa, E22 = E33 = 63 GPa,
G12 = G13 = 24.2 GPa, G23 = 24.2 GPa.

In accordance with the detailed solution procedure for a
PZT plate in section 3, we can obtain the strain, curvature,
stress resultants and moments of the piezoelectric layer, elastic
layer and an uncracking composite respectively. Then, the
energy release rate is calculated in the cases of modes I
and II fracture of a composite plate integrated with a PZT
layer tested by a double cantilever beam test, as shown in
figure 2.

For mode I fracture of PZT/material I and PZT/material
II composite laminates, the simulations of the energy release
rate are shown in figure 3 as a function of the applied
electric field and the thickness ratio h1/h2 of the piezoelectric
layer and elastic layer for a specified mechanical loading.
Obviously, the correlation of the energy release rate and the
applied electric field is shown as a parabolic curve with a
symmetric axis about E3 ≈ 0 for both PZT/material I and
PZT/material II composites. From figure 3(a), it is clear
that both the positive and negative applied electric fields can
advance the delamination inside PZT/material II extension
in any case. However, for the PZT/material I composite,
while the thickness ratio h1/h2 of the piezoelectric layer
and elastic material I layer reaches a certain critical ratio
(h1/h2 = 9) as indicated in figure 3(b), the energy release
rate always decreases with increasing either the positive or
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Figure 3. The influence of the applied electric field and the thickness ratio h1/h2 on the energy release rate for model I fracture for two of
PZT/elastic composites: (a) PZT/isotropic material II composite and (b) PZT/anisotropic material I composite.

negative applied electric fields. This prediction indicates that
both the positive and negative applied electric fields can prevent
the delamination from extending. With regard to the effect
of the thickness of the piezoelectric layer, the simulations
indicate that the extreme values of the thickness ratio h1/h2

of the piezoelectric layer and elastic material II layer have a
more predominant effect on the energy release rate than other
values of the ratio, as depicted in figure 3(a). However, for
PZT/material I composite laminate, the thickness effect on the
energy release rate becomes less on increasing the external
electric field.

For mode II fracture of PZT/material I and PZT/material
II composites, the calculation of the energy release rate is
depicted in figure 4 as a function of the applied electric field
and the thickness ratio h1/h2 for a given mechanical loading
p0. The calculations indicate that the relationship between the
energy release rate and the applied electric field also appears
as a parabolic curve with a symmetric axis E3 = 73.98p0 for
material I andE3 = 375.87p0 for material II. From figure 4(a),
it is evident that both the negative and positive applied electric

fields, excluding the range [0, 751.74p0], can promote the
delamination propagation for the PZT/material II composite
for any case. In contrast, the applied positive electric field in the
range [0, 751.74p0] can enhance the fracture strength, which
agrees with experimental results [17]. For the PZT/material
I composite, both the negative and positive applied electric
fields, excluding the range [0, 147.96p0], can improve the
energy release rate when the thickness ratio h1/h2 is less
than a certain critical value, as shown in figure 4(b). In
comparison with the effect of the thickness of piezoelectric
layer on the energy release rate in mode I fracture, either larger
or smaller thickness ratios of the piezoelectric layer and elastic
layer have less effect on the energy release rate for mode II
fracture.

Meanwhile, the effect of the applied electric field and
mechanical loading on the energy release rate for mode II
fracture of the PZT/material II composite is shown in figure 5.
The results also show that the energy release rate may decrease
on increasing the applied electric field or mechanical loading.
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Figure 4. The influence of the applied electric field and the thickness ratio h1/h2 on the energy release rate for model II fracture of two
PZT/elastic composites: (a) PZT/isotropic material II composite and (b) PZT/anisotropic material I composite.
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Figure 5. The effect of the applied external mechanical and electrical loading on the energy release rate for mode II fracture of a
PZT/isotropic material composite.

In other words, the applied positive electric field can enhance
the fracture strength in some cases.

In terms of the above calculations and discussion, it is
shown that we can design optimal smart structures, such as
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specially required mechanical properties and reliability etc,
by a method of selecting a suitable piezoelectric material and
elastic material and their thickness ratio.

5. Conclusions

A generalized two-dimensional delamination model is
established to investigate the effect of the applied electric
field on the energy release rate of the delamination of
piezoelectric/elastic laminates. The simulations for modes I
and II fracture of the PZT/elastic laminates reveal that the effect
of the positive and negative electric fields on the energy release
rate of a smart structure is determined by the material properties
of the smart layer and the elastic layer and their thickness
ratio. Therefore, we can select the right material properties
of each lamina in order to improve the fracture strength of
smart structures.
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Appendix

The boundary-discontinuous induced–introduced unknown
constant coefficients are presented as follows

(aum, bum) = 4

ab

∫ a

0
[±u0(x, b)− u0(x, 0)] cos(αmx) dx

(A1)

(cun, dun) = 4

ab

∫ b

0
[±u0,1(a, y)− u0,1(0, y)] sin(βny) dy

(A2)

(avn, bvn) = 4

ab

∫ b

0
[±v0(a, y)− v0(0, y)] cos(βny) dy

(A3)

(cvm, dvm) = 4

ab

∫ a

0
[±v0,2(x, b)− v0,2(x, 0)] sin(αmx) dx

(A4)

(ewn, fwn) = 4

ab

∫ b

0
[±w,12(a, y)− w,12(0, y)] sin(βny) dy

(A5)

(gwm, hwm) = 4

ab

∫ a

0
[±w,22(x, b)− w,22(x, 0)]

+ cos(αmx) dx (A6)

(kwn, lwn) = 4

ab

∫ b

0
[±w,111(a, y)− w,111(0, y)]

+ sin(βny) dy (A7)

where the subscript , i denotes the partial derivation for the
mid-plane displacement u0, v0 andwwith respect to the i-axis.
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